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VII Direct Numerical Simulation of Fluidization of 1204 Spheres

� Experiments

Pan, Joseph, Bai and Glowinski 2002 have carried out simulations and experiments of the
fluidization of 1204 balls in a slit bed.

One goal pursued there is to demonstrate that numerical experiments on fluidization can be
processed in log-log plots for straight lines leading to power laws as did Richardson and Zaki
1954 for real experiments. As far as we know, we are the only group of researchers to carry out
this program. There is no prior literature, in which power laws are obtained from numerical
experiments. On the other hand, there are a number of numerical packages for particles in fluids
that might be used in this way. The methods of Stokesian dynamics (see Brady 1993) can be
recommended for problems in which inertia is absent. Hofler, Muller, Schwarzer and Wachmann
1999 introduced two approximate Euler-Lagrangian simulation methods for particle in fluids. In
one method, the particle surface is discretitized in grid topology; spheres are polygons on flat
places between nodes. In the second method, a volume force term is introduced to emulate rigid
body motion on the particle surface; this method is similar to the force coupling methods,
introduced by Maxey, Patel 1997. Hofler et al 1999 calculated sedimentation of 65,000 spheres
but at Reynolds numbers so small that it is essentially Stokes flow. Johnson and Tezduyar 1999
used a fully resolved DNS/ALE method to compute sedimentation of 1,000 spheres at Reynolds
numbers not larger than 10. A fully resolved method which is based on matching explicit Stokes
flow representations of flow near particles with computations on a grid has been proposed by
Ory, Oguz and Prosperetti 2000. The problem of particulates in turbulent flows has been
considered by a few authors: Crowe, Chung, Troutt 1996, McLaughlin 1994, Maxey, Patel,
Chang, Wang 1997; these approaches use point particle approximations because fully resolved
computations in turbulent flow are not presently possible.

The correlations of Richardson and Zaki 1954 are an empirical foundation for fluidized bed
practice. They did very many experiments with different liquids, gases and particles. They
plotted their data in log-log plots; miraculously this data fell on straight lines whose slope and
intercept could be determined. This showed the variables follow power laws. This same method
works for numerical experiments on fluidization and on the lifting of particles across streamlines
in Poiseuille flow (see Patankar, Ko, Choi, Joseph 2001, Patankar, Huang, Ko, Joseph 2001).
The existence of power laws can be regarded as a consequence of similarity Barenblatt 1996; it is
not an obvious consequence of the physics of flow of particulates or of the equations of motion.
The possibility that power laws underlie the flows of dispersions generally could be considered.

� Numerical Method

To perform the direct numerical simulation of particulate flow, Glowinski et al 1997, 1998,
1999 have developed a methodology that is a combination of a distributed Lagrange multiplier
based fictitious domain method (DLM) and operator splitting methods. The basic idea is to
imagine that fluid fills the space inside as well as outside the particle boundaries. The fluid-flow
problem is then posed on a larger domain (the "fictitious domain”). This larger domain is
simpler, allowing a simple regular mesh to be used. This in turn allows specialized fast solution
techniques. The larger domain is also time-independent, so the same mesh can be used for the
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entire simulation, eliminating the need for repeated remeshing and projection (see Figure VII.1).
This is a great advantage, since for three-dimensional particulate flow the automatic generation
of unstructured body-fitted meshes in the region outside a large number of closely spaced
particles is a difficult problem. In addition, the entire computation is performed matrix-free,
resulting in significant savings.

Figure VII.1.  Part of a 2D example of a fixed triangular grid used in DLM computation. The same grid
covers the fluid and solid. The fluid in the circle is bordered by Lagrange multipliers to move as a
rigid body.

The velocity on each particle boundary must be constrained to match the rigid-body motion
of the particle. In fact, in order to obtain a combined weak formulation with the hydrodynamic
forces and torques eliminated, the velocity inside the particle boundary must also be a rigid-body
motion. This constraint in enforced using a distributed Lagrange multiplier, which represents the
additional body force per unit volume needed to maintain the rigid-body motion inside the
particle boundary, much like the pressure in incompressible fluid flow whose gradient is the
force required to maintain the constraint of incompressibility.

Concerning the space approximation of the problem by finite element methods, we use
P1-iso-P2 and P1 finite elements for velocity field and pressure respectively in the space
approximation like in Bristeau, Glowinski and Periaux 1987. Then we apply an operator-splitting
technique of Marchuk-Yanenko discussed in Marchuk 1990 for discretization in time.
(Operating-splitting schemes have been used for solving the Navier-Stokes equations by many
authors, starting, to our knowledge, with A. Chorin 1967, 1968, and 1973.) The linearly
constrainted quadratic minimization problems which arise from this splitting are solved using
conjugate gradient algorithms, yielding a method that is robust, stable, and easy to implement.
For further details, see Glowinski, Pan, Hesla and Joseph 1999. The immerse boundary methods
of C. Peskin and his collaborators, Peskin 1977, 1981, Peskin and McQueen 1980, on the
simulation of incompressible viscous flow in regions with elastic moving boundaries also uses a
fictitious domain method, but without Lagrange-multipliers.
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The statement that DNS fully resolves the solid-liquid flow should be qualified to say
resolved up to the treatment of collisions. In the older versions of DNS previously mentioned,
particles were prevented from colliding by an artificial repulsive force. If we consider the
particular case of circular particles in 2-D or spherical particles in 3-D, and if Bi and Bj are such
two particles, with radiuses Ri and Rj and centers of mass Gi and Gj, we shall require the
repulsive force p

ijF
�

 between Bi and Bj to satisfy the following properties:
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where di,j = |Gi - Gj|, ρ is the force range, and εp is a given small positive “stiffness” parameter.
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Figure VII.2. Imaginary particle

For the particle-wall repulsive force, we take
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where dj = |Gi – G'i|  is the distance between the center of Bi and that of the imaginary particle at
the other side of the wall Γj (e.g., see Figure VII.2) and εw is another (small positive) “stiffness
parameter.” This force does not belong to the problem's description.

Fortunately the artificial repulsive force does not seem to have a big effect on the global
motion (see Figure VII.5). However, the implementation of a security zone has the unfortunate
consequence that particles cannot close pack. Though this does not seem to effect fluidized flows
greatly, we must be able to generate close packing if we are able to accurately model the
frictional resistances between close packed solids and walls.

Singh, Hesla and Joseph 2001 developed and applied a method in which repulsive forces are
activated only when particles touch; this strategy allows for hydrodynamic action to within the
tolerance of the mesh.

The DLM approach uses uniform grids for two and three-dimensional domains, and relies on
matrix-free operations on the velocity and pressure unknowns in the domain. This simplifies the
distribution of data on parallel architectures and ensures excellent load balance (see Pan, Sarin,
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Glowinski, Sameh and Periaux 1999). The basic computational kernels, vector operations such
as additions and dot products and matrix-free matrix-vector products, yield excellent scalability
on distributed shared memory computers such as the SGI Origin 2000. A multilevel parallel
elliptic solver, Sarin and Sameh 1998b, has been incorporated into the DLM algorithm for two-
dimensional fluidized bed problems. This has yielded speedup of about 6 on 16 processors
compared with the elapsed time on 2 processors on an SGI Origin 2000 at the NCSA. In
addition, this represents an impressive eight-fold increase in speed over the best serial
implementation. Even though there is a serial component of the 3D code, we have still observed
that the speedup of 1.6 on 4 processors compared with the elapsed time on 2 processors on an
SGI Origin 2000. But no more speedup can be gained if we increase to 8 processors from 4
processors. All numerical results reported in this article are obtained on 4 processors on an SGI
Origin 2000 at the Minnesota Supercomputing Institute.

� Experiments

We have carried out experiments of fluidization of 1204 spheres in a slit bed whose
dimensions are

[depth, width, height] = [0.686cm, 20.30cm, 70.22cm].

The cross-sectional area of the bed is

 A = 0.686 × 20.30 = 13.32cm2.

We could not measure variations of the gap size inside the bed, but the glass plates were
pressured against 0.686cm spacers by aluminum screw clamps. The nominal diameter of the
spheres was

d = 0.635cm (1/4 inch).

The sphere diameters varied from 0.635 to 0.6465 (see Figure VII.3). The averaged diameter of a
sphere was

d  = 0.639826cm.

The density of the nylon sphere  is

ρs = 1.14 gm/cc.

The sphere was fluidized in water (we did not monitor the room temperature) whose density and
viscosity are

ρ f  = 1 gm/cc,   η f  = 0.01 poise.
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Figure VII.3. Distribution of diameter of spheres used in the fluidization experiment.

The Reynolds number based on the fluidization velocity for a single sphere is
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 . (VII.3)

Local Reynolds numbers in a fluidized suspension can be larger because of the back flow
through construction formed by nearly spheres. The velocity

cm/sec00.32 =V (VII.4)

for incipient fluidization was identified roughly to within 0.1 cm/sec as the value in which
spheres more loosely packed in the fixed bed lifted slightly away from nearly spheres. According
to the Richardson-Zaki formula (VII.23), the velocity should vary between iV  and )0(V .

sec/cm5.11)0()(3 =≤≤= VVVi φ . (VII.5)

Our experiments were consistent with this inequality.

The water is injected at the bottom of the bed through an array of plastic tubes under a
distributor and an eddy dampening screen. The resulting fluidizing velocity is not uniform but
there is no evidence of systematic anisotropy as the flow passes through the distributor screen.
Large eddies of hydrodynamic origin just exactly like the one shown in the 1204 sphere
animation on http://www.aem.umn.edu/Solid_Liquid_Flows/ are always present in the
experiments. The fluidizing velocity is computed from values of the mass flow rate measured by
collecting the weight of the overflow in a beaker over a fixed period of time. The mass flow rate
is
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tWQf ∆=
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where 
⋅

Q  is the volume flow rate; W is the weight of fluid in the beaker collected over time t∆ .
The fluidizing (superficial) velocity is

AQV
⋅

=)(φ (VII.7)

where A is the cross-sectional area 13.32cm2.

The height of the bed is measured by averaging the height of the top layer of particles. Stable
bed heights with large fluctuations were typical. The measured values of the bed height as a
function of the fluidization velocity )(φV  are presented in Figures VII.4 and VII.17 where they
are compared with numerical simulation.

The solids fraction at a fluidization velocity ( )φV  is given by inverting the height ( )φH

HAH
ds 437.461204 3

==
Ω
Ω= πφ . (VII.8)

� Numerical Simulation

The calculation was carried using the distributed Lagrange multiplier method (DLM)
described in Section 2. The mesh size for velocity is

cm06858.0=Vh

so the number of nodes is 3,348,675 (11 × 297 × 1025). The mesh size for the pressure υhhp 2=
(458,622) nodes. The time steps used in the computation are either 0.001 or 0.0005 seconds, with
smaller time steps taken at times when the bed is fully expanded. The main parts of the
computation were carried out with a partially parallel code; the computation time for running it is
115 seconds per time step on four R12000 processors in a SGI Orgin2000 at the Minnesota
Supercomputing Institute. For example, the in case V = 4.5 cm/s, it took about 1660 hours to
reach time τ = 26 seconds in the simulation; this is 63.84 hours of computation time for 1 second
of real time.

In the simulation, the initial configuration of particles for the case of V = 3 cm/s is a square
lattice. The initial flow filed is zero everywhere for the case of V = 3 cm/s. Then we used the
results of V = 3 at t = 13 (resp., t = 19.5) as the initial conditions for the case of V = 3.5 (resp.,
V = 2). For the case of V = 4 (resp., V = 4.5), the initial conditions are obtained from the case of
V = 3.5 (resp., V = 4) at t = 16.15 (resp., t = 2). And finally for the case V = 5, the initial
conditions are obtained from the case of V = 4.5 at t = 27.2. The above choices of initial
conditions explains why the starting values of the bed height for different V are different in
Figure VII.4. For the parameters in (VII.1) and (VII.2), we took

εp = 5 × 10-7, εw = εp, ρ  = hv = 0.06858cm. (VII.9)
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The force range 0.06858cm is larger than the distance (0.686-0.635)/2 = 0.0255cm between a
centered ball and a side wall. Hence, in the simulation the balls are effectively centered between
the close walls by the particle-wall repulsive force. This centering mechanism is artificial; in the
experiments the balls can go closer to one wall or another. Therefore, the drag on the balls in the
experiment is larger than the drag in the simulation.

Figure VII.4 gives the bed height H(t) as a function of time for different fluidizing velocities.
The bed height is the average height of the top layer of spheres. The height rise curves have been
extrapolated to terminal rise for large times by a least square fit to a + b exp{-ct}. For the case
V = 3 cm/s we fit H(t) to a + b exp{-c(t-2)} for t > 2 because the bed height first decreases. The
terminal values

)(lim
0

tHa
t→

=

are given by

V (cm/s) a (inches)

3 13.33

3.5 16.84

4 19.10

4.5 21.29

5 25.52



Direct Numerical Simulation of Fluidization of 1204 Spheres

printed 03/11/02 48   • Interog DNS SLF-3.doc

0 10 20 30 40 50 60 70 80
10

14

16

18

20

22

24

26

28

30
The history of the height of the fluidized bed

Time (sec)

B
e
d
 H

e
ig

h
t 

(i
n
c
h
)

(b)

(c)

(d)

V = 5 cm/sec

V = 2 cm/sec

V = 3 cm/sec

V = 3.5 cm/sec

V = 4 cm/sec

V = 4.5 cm/sec

(a)

Figure VII.4. Bed height H vs. time for different values of the fluidizing velocity V. H is the average
height of the top layer of 1204 spheres. The letters (a) … (d) index the snapshots shown in Figures
VII.9-10. The dashed lines - - - are least square fits to H(t) = a + b exp (-ct).

To test the effect of changing the size of the security zone in a relatively short time we
studied the fluidization of 150 spheres rather than 1204 spheres. The size of the security zone
was reduced to hv/2. Figure VII.5 shows that the change in the height rise is modest, the smaller
security zone allows for an increase in the bed height of about 2 or 3 percent.
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Figure VII.5. Bed height H vs. time for V = 4 cm/s. H(t) is the average height of the top layer of 150
spheres. The lines are least square fits to H(t) = a + b exp (-c(t-2)). Dashed - - - security zone 0.5hv;
solid — security zone hv.

� Qualitative comparison of experiment and simulation

The simulation was carried out in a fluidization column whose coordinates are shown in
Figure VII.6.

X2,V2

d = 0.635 cm (1/4")

X3,V3

X1,V1
20.30 cm

0.686 cm

Figure VII.6. Coordinates and velocity components in the fluidization column. The fluidization velocity
is V ≡ V2.

In Figures VII.7 and VII.8 snapshots of simulation of 1204 spheres are shown in perspective
to emphasize that the simulation is three-dimensional. The video animations of these simulations,
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which can be found at www.aem.umn.edu/Solid-Liquid_Flows, cannot be distinguished from real
experiments. In Figures VII.9-10 we compare snapshots of simulations in frontal view with
snapshots from experiments under equivalent conditions. We also compare snapshots of
simulations in frontal view of V = 4 cm/s with snapshots from experiments under equivalent
conditions for the case of V = 4.037 cm/s in Figures VII.11 and VII.12. We can find that the
simulation results do have features shown in the snapshots from experiments.

  
Figure VII.7.  Snapshot of simulation of 1204 spheres with V = 4 (left) and a blow-up (right) at t = 32.

  
Figure VII.8.  Snapshot of simulation of 1204 spheres with V = 4.5 (left) and a blow-up (right) at t = 31.
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Figure VII.9. Cf. (a) in Figure VII.4 (left); cf. (b) in Figure VII.4 (right).

   
Figure VII.10. Cf. (c) in Figure VII.4 (left); cf. (d) in Figure VII.4 (right).
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Figure VII.11. Comparison of snapshots of simulations of V = 4 at t = 2 (left) and 4 (right), and
snapshots from experiments under equivalent conditions for the case of V = 4.037.

            

Figure VII.12.  Comparison of snapshots of simulations of V = 4 at t = 6 (left) and 9 (right), and
snapshots from experiments under equivalent conditions for the case of V = 4.037.

� Numerical computation of averaged quantities

DLM produces huge amounts of data at each one of millions of nodes. The problem is how to
structure this data to extract useful information; we must decide beforehand what data to collect
as values to store for post processing. The fixed node property of DLM is particularly adapted to
the collection of data in a form suitable for averaging methods used to construct models.
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To define a data structure we define a data string; this is a sequence of numbers produced at
that node. We call the number of values in the data string the number of hits. In these simulations
in which time steps are 001.0=∆t  sec for start up and 0.0005 sec for the later times we may get
10,000 hits or more in a long simulation. Sometimes a particle is at the node, at the other times
fluid is there. By processing data at hits we can create time averages without significant cost in
computational cost. Suppose a solid is at the node M times and the fluid is there M ′  times,

410=′+ MM . Then 410M=φ  and 1,104 =+′= φεε M  gives the volume fractions. If V(x,t)
is the component of velocity parallel to gravity and x is at a node and V1(x,t) are a data string of
hits. Then

�
=

=
M

i
is tV

M
tV

1
),(1),( xx (6.1)

where x is at a node; obviously

�
′

′
=

M

if tV
M

tV ),(1),( xx . (6.2)

Then, at the same node, we ought to find

( ) εφφ fs VVV += . (6.3)

After transients have disappeared in the fluidization we ought to find that 0=sV .

In the same way, we can find that a data string of values of the angular velocity as a
difference of the velocity at a point in the solid and its mass center and so on for other averages.

The time averages formed from data strings can be thought to be ensemble averages on non-
transient flow and may be assumed to be local time averages on intervals with a sufficiently large
number of hits which is small relative to the length of time of transients. By repeating
simulations we could actually initiate the procedure used to generate ensemble averages. There is
a mathematical literature on the relation of time averages to ensemble averages which is rather
theoretical and involves assumptions of a mathematical nature which are difficult to verify.

In our simulation of 1204 spheres we created such data strings at 38 nodes on a line across
the width of the bed at a height of 10.179 in. in a plane in the center of the depth, 0.135 in. from
each wall. The width of the bed is 8 in. and the 38 nodes plus 2 wall points means that the nodes
are separated by 1/10 in. The number of hits was M = 7365 for the case V = 4.5 cm/sec taken
every 4 time steps. In Figure 13 we present the solid fraction φ and the three components of the
average solid Vs, liquid Vf and composite velocity V(φ) = Vsφ + Vf (1-φ) for the case V = 4.5 cm/s.
The velocity components V1, V2 and V3 correspond to coordinates in the cross section of the
fluidization column shown in Figures 13(b)—13(d).

The data presented in Figure 13 shows that the dynamics of the bed are strongly two-
dimensional, the velocity component V2 is in the vertical direction; in the one-dimensional
approximation the composite velocity

)1()()( 222 φφφ −+= fSC VVV
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would equal V(φ). Obviously V2 = V2 (x3) because of a large circulating eddy which is apparent
on the video animations on http://www.aem.umn.edu/Solid-Liquid_Flows and in experiments. It
is also apparent that the difference between averaged fluid velocity V2f and the averaged solid
velocity V2S is positive; the solid lags the fluid by 3 to 5 cm/s. The transverse components of
velocity V1 and V3 are basically zero which is an assumption one makes in a one-dimensional
theory. The fluctuation level of V1 is very low because of the collision strategy interacting with
nearby side walls, but the particles are not rigorously centered by these artificial collision forces.

It would be desirable to have many more points in our data strings. Greater computational
efficiency and speed is a challenge for the future.

Figure VII.13 shows a strong two-dimensional variation of average equations across the slit
column which is suppressed in one dimensional studies.
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Figure VII.13. Volume fraction φ and averaged components of velocity V1, V2, V3 in coordinate
direction x1 , x2 , x3 at 38 nodes spaced at 1/10 in. across the 8 in. side of the fluidization column
when V = 4.5 cm/s. (a) φ, (b) V1 , (c) V2 , (d) V3. The difference between the averaged fluid and
averaged solid velocity is the slip velocity. This is the first exact calculation of the slip velocity in a
fluidized suspension.
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� Dynamic and wall friction pressure in a fluidized bed

The stress in an incompressible Newtonian fluid is given by

σσσσ = -P1 + 2µD[u] (VII.13)

where D[u] is the symmetric part of the velocity gradient u∇  and P, the total pressure, is the
mean normal stress. The equation of motion in the z direction is

w
dz
dp

dt
dw 2∇+−= µρ (VII.14)

where w = ez•u and p = P + ρfgz is the dynamic pressure that we compute in our DNS simulation.

We may compute an average dynamic pressure gradient 
dz
pd  by averaging over cross sections

and time. This quantity then is given by DNS and

g
dz
Pd

dz
pd

fρ+= . (VII.15)

We may decompose

sw ppp += (VII.16)

where wp is the wall friction pressure and sp is the pressure required to fluidize the spheres. In
fluidized bed practice it is assumed that when wall friction is negligible the pressure gradient

( ) gg
dz
Pd

cfP ρερφρ −=+−= (VII.17)

balances the composite weight of fluid plus solids. In this case

gg
dz
pdg

dz
pd

dz
Pd

cf
s

f ρρρ −=−=−= (VII.18)

Hence

( ) φρρ g
dz
pd

fP
s −−=  (VII.19)

This expression was verified in experiments of Wilhelm and Kwauk 1948 and Lewis, Gilliand
and Bauer 1949. Combining now (VII.16) and (VII.19) we get

( ) φρρ g
dz
pd

dz
pd

fP
w −−= (VII.20)

When φ = 0, the dynamic pressure is equal to the wall friction pressure.
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Equation (VII.20) is an equation for the wall friction pressure gradient with values of dzpd
and φ given by DNS. Table VII.1 gives the values of terms in this equation for different
fluidizing velocities. The table shows that the wall friction pressure gradient is about 1/4 of the
pressure gradient needed to fluidize the spheres. As V increased, φ decreases and the pressure
gradient ( ) φρρ gfP −−  to fluidize spheres decreases. The small decrease in the wall friction
pressure gradient with fluidizing is surprising; the wall friction should go up as the speed
increases. We conjecture that the decreased friction is due to a decrease in the effective viscosity
µ(φ) of the mixture as φ is decreased; the viscosity of densely packed mixtures is greater.
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Figure VII.14. Solid fraction f dynamic pressure gradient and wall friction pressure gradient vs.
fluidizing velocity.

The calculation given here points a new direction for the interrogation of DNS for new
results in continuum engineering descriptions. Our conclusions are tentative because the results
about the wall friction pressure gradient depend on the accuracy of our numerical simulation near
walls. It is certainly true that the activation of a repelling force when the particle approaches the
wall reduces accuracy. We are confident that the size of the security zone can be reduced to zero
by techniques under development so the full hydrodynamics of lubricating flow can be captured
up to mesh resolution.

Table VII.1.Terms in the dynamic pressure gradient equation (VII.20). ρp = 1.14 g/cc, ρf = 1 g/cc.

V (cm/s) -
dz
pd  (dynes/cm2) φ ρcg (ρp - ρf)gφ

dz
pd

dz
pd w −=−  - (ρp - ρf)gφ

3 63.570 0.3582 1050.1 49.177 14.393

3.5 52.050 0.2956 1021.2 41.246 11.463

4 44.694 0.2439 1014.2 34.155 11.202

4.5 39.171 0.2119 1009.8 29.758 10.076

5 34.990 0.1842 1006.0 25.957 9.705
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� Sedimentation and fluidization velocity of single spheres

We did simulations and experiments of the sedimentation and fluidization velocity of single
spheres. It is sometimes assumed that these two velocities are the same but in general this is true
only in very special cases.

The flow of fluid up the slit bed is close to a developing Poiseuille flow in which the velocity
of the fluid vanishes at the wall but not at the center. In the sedimentation case the fluid does not
move unless disturbed by a falling particle. The flow of fluid in a fluidized bed need not be fully
developed. The flow profile can change from station to station in the fluidized bed case, but not
in the sedimentation case.

In the ideal case there is one and only one fluidization velocity and, if we ignore the flow
variations just mentioned, this velocity is the sedimentation velocity; in both cases the drag
balances the buoyant weight. For steady flow fluidized and sedimenting particle velocities are
equivalent under Galilean transformation. In fact we do not verify this ideal case in
sedimentation or fluidization; a unique velocity does not emerge as can be seen from the
experimental results given in Figure VII.15.
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Figure VII.15. Sedimentation  and fluidization velocities   from experiments using different size
spheres. The particle lifts off the distributor when V is greater than  and is dragged out of the
column only when V is greater than .

In Figure VII.15 we have plotted fluidization and sedimentation velocities for different
spheres. Focusing first on sedimentation we note that even when we drop the same sphere in the
quiet slit bed, the sedimentation velocity differs from trial to trial. Variations of as much as 7%
are observed. How do we account for such variations?
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As a practical matter our slit bed has a nominal gap size of 0.686cm. The gap size is certainly
not uniform; perhaps the gap size varies between 0.6778 and 0.7239cm. Obviously this variation
will lead to a variation in the sedimentation velocity.

A more fundamental reason for the variability in the sedimentation rate is that the motion at
Reynolds numbers in the thousands is not steady and is probably chaotic in the sense of
dynamical systems due to vortex shedding. The falling spheres do not center rigorously but are in
some kind of unsteady off-center motion that is not well understood. How and why this kind of
unsteadiness leads to different settling velocities is not understood.

Table VII.2 lists the values of the velocity of sedimenting spheres of different diameter
falling in a 0.686cm gap between the walls of the sedimentation column. The sedimentation
velocity appears to increase rather markedly with mesh refinement; extrapolated to a fine mesh
h→0 would seem to imply a fall of about 10 cm/s rather than the 8.7 cm/s value observed in the
smaller mesh. We do not see a consistent variation with diameter. This may be due to some kind
of unsteadiness to which we alluded in the previous paragraph. There is a discrepancy between
the values in Table VII.2 and those reported in the experiments of between 10% and 20% if
8.7 cm/s is taken as the representative simulation value. We think that it is probable that the
faster fall velocity in the experiments may be due to channeling through places where the gap
size is larger.

Table VII.2.  Averaged vertical terminal velocities of balls of different diameter and ρp = 1.14 g/cc
computed by DNS in the volume of Figure VII.6.

Diameter

0.6300cm 0.6350cm 0.6398cm 0.6500cm

h = 0.027" -8.085378 -8.130019 -8.155760 -7.790286

h = 0.018" -8.722692 -8.738451 -8.689694 -8.724728

The fluidization results are of great interest. We do not get a unique fluidization velocity; for
each sphere there is a rather large interval of velocities for which the sphere does not fall to the
bottom or blow out of the bed; the interval may range, say from 6 cm/s to 11 cm/s. In fluidization
velocities less than, say 6 cm/s the sphere will not rise and for large velocities, say about 11 cm/s
the sphere will blow out of the bed.

An important and practically useful result arising from this study of fluidization is that the
height of the sphere above the bottom increases with the fluidizing velocity. This positioning
property is such that the position of the particle in the bed may be controlled at the dial setting of
the inlet flow rate. The positioning property also arises form our simulation and is clearly evident
in the rise curves shown in Figure VII.16. We have seen such positioning hydrodynamics in
experiments on the fluidization of sensors in round pipes where the ability to position the sensor
is of practical importance.
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Figure VII.16.  H vs. t for a single particle d = 0.635cm from numerical simulation. For V < Vm ≈ 6 cm/s
the sphere remains at the distributor; for V > Vm ≈ 10.5 cm/s the sphere is dragged out of the bed.

The aforementioned positioning hydrodynamics is not understood. A promising explanation
follows from the observation that the average distance between the particle and the wall is a
function of the flow speed. Loosely described, we could say that the Segré-Siberberg position of
equilibrium between the centerline of close walls and the walls is a function of flow speed. The
overall drag on the sphere, which in any case must balance the buoyant weight, is a function of
flow speed and particle position. Evidently the flow speed produces a particle position such that
the drag-weight balance is preserved at different heights in the bed.

In the simulation an exactly zero velocity of the sphere was not achieved. For V ≤ 6 cm/s the
particle will not rise. The particle velocity in the interval of fluidization is very nearly zero and
rather random as shown in table VII.3. The particle rises out of the bed when V > 10.5.
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Table VII.3.  The averaged vertical velocities of a ball of diameter 0.635cm fluidized in a 2D-like bed of
dimension D × W × H = 0.27" × 7.992" × 8.1" are in the following table. The ball was initially
located at the center of the bottom of the bed.

In-flow velocity
(cm/s)

Averaged vertical speed
(after stabilized)

6 -0.00522
6.5 0.00827
7.5 0.00219
9 -0.00178

9.5 0.00631
10 0.0006997

10.5 0.00521
10.75 0.276

11 0.265
12 1.260

� Richardson-Zaki correlations from DNS

Here we introduce an application of DNS that we call the method of correlations. The
method is inspired by the work of Richardson and Zaki 1954. They processed their data in log-
log plots and found straight lines leading to power laws. The method of correlations follows the
same procedure using numerical data from DNS rather than experimental data. Data from our
real and numerical experiments are shown in Figure VII.17. The experiment and simulations do
not quite match. The 1204 spheres used in the experiments are polydisperse (Figure VII.3) with
an average diameter of 0.6398cm rather than the 0.635cm diameter used in the simulation.
Moreover the lowest data point for the simulation may be inaccurate because the artificial
repulsive force which is activated to keep particles apart makes accurate calculations near close
packing at incipient fluidization less accurate.
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Figure VII.17. The bed height vs. fluidizing velocity for both experiment and simulation.

The Richardson-Zaki correlation relates the fluidization velocity V(φ) to the solid fraction
φ = 1 - ε where ε is the fluid fraction, in a factored form in which V(0), the blowout velocity for a
single sphere, is multiplied by a hundred settling function. When V > V(0) all the particles will be
dragged out of the fluidized bed. For the nondispersed case studied in simulation

Hs = 4.564/(1-ε) (VII.21)

The mean sphere size for the polydisperse case studied in the experiments is slightly larger and

He = 4.636/(1-ε) (VII.22)

The Richardson-Zaki correlations is given by

V(φ) = V(0)ε n(Re) (VII.23)

where V(0) is V when ε  = 1,
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(VII.24)

and D is the tube radius. The structure of the RZ correlation deserves consideration. The
exponent n does not depend on Re when Re is large or when Re lies between 500 and 700. In
these two regimes V(φ) /V(0) is a power law. For other values of Re, V(φ) /V(0) can be regarded
as a transition between power laws. This transition may be described empirically by a "logistic
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dose curve" which is discussed in Appendix A of this monograph. In our experiments and
simulations Re is confined to the range for which n = 2.39.

The data shown in Figure VII.17 is plotted in a log-log plot in Figure VII.18 as V vs. ε. We
draw a straight line with slop n = 2.39 through both sets of data. The fit is not perfect but we
think rather encouraging. From the straight lines we determine the blow-out velocities Vs(0) =
8.131 cm/s and Ve(0) = 10.8 cm/s and find the power laws

Vs(φ) = 8.131ε 2.39 cm/s

and (VII.25)

Ve(φ) = 10.8ε 2.39 cm/s .
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Figure VII.18. Data from Figure VII.17 plotted in a log-log plot. The slopes of the straight line are given
by the Richardson-Zaki n = 2.39. The blow-out velocities Vs(0) and Ve(0) are defined as the
intercepts at ε = 1.

Different reasons could be considered for the discrepancy between numerical and
experimental blow out velocities. The following argument suggests that the discrepancy is due to
the difference in the diameter 0.635cm of the sphere in the simulation and average diameter
0.6398cm of the 1204 spheres used in the experiments. This means that the walls will increase
the drag more in the experiments than in the simulations. To estimate the effect we may say the
wall correction formulas of Francis 1933, which was derived for Stokes settling of a sphere of
diameter d in a tube of diameter D
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(VII.26)

If we are allowed to consider D = 0.686cm, which is the distance between plane walls rather than
a tube diameter, then the ratio of velocities corresponding to the nominal d1 and the average
diameter d2 is given by
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The value 1.233 is very close to the shift ratio

248.1
131.8

8.10 = (VII.28)

necessary to bring the straight lines in Figure VII.18 together. After shifting by (VII.28) we
reverse the log-log plot to view the shifted plot in Figure VII.19.
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Figure VII.19.  Bed height vs. fluidizing velocity after shifting by the ratio (VII.28) of blow-out velocities
obtained from the intercepts at ε = 1 in Figure VII.18.

� Discussion

The fluidization of 1204 spheres at Reynolds numbers in the thousands was studied using the
method of distributed Lagrange multipliers. The results of the simulation are compared with a
real experiment designed to match. This is the first direct numerical simulation of a real fluidized
bed at the finite Reynolds number encountered in the applications. It is the first attempt to match
a real experiment to a fully resolved simulation. The numerical method used is presently very far
in advance of competitors for fully resolved CFD approaches to solid-liquid flow. The
experiments are carried out in a slit fluidization column in which the gap between close walls is
slightly larger than the fluidized spheres. The match between theory and experiment is very good
but not perfect; the spheres in the experiments are polydisperse with an average diameter of
0.6398cm whereas all the spheres in the simulation are 0.635cm. When these differences are
factored into the comparison the simulations and experiments are in good quantitative
agreement; the qualitative agreements are compelling. The emphasis of this paper is on the
interrogation of DNS for results in multiphase fluid mechanics and introduces four new
directions. First we have shown how our numerical method can be used to generate averaged
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values of the solid fraction, the average of velocity components of both the solid and fluid and
possibly other averaged values used in multiphase models; for example we give the first ever
numerical simulation of the slip velocity, which might be used in drift flux models. In a second
application we obtain the contribution from wall friction that is usually neglected in one-
dimensional models of the dynamic pressure in a fluidized flow. We find that in our slit bed the
contribution of wall friction is about 1/4 of the total and that the contribution decreases modestly
as the bed expands. Our comparative study of sedimentation and fluidization of single spheres
revealed an unanticipated result that the balance between drag and buoyant weight can be
achieved in an interval of velocities. We framed this result as a positioning property; the particle
may be moved up and down the column by changing the fluidization velocity. The fluid
mechanics here are not understood; we conjectured that the drag can be maintained as the
velocity changes by a simultaneous change in the stand-off distance from the wall. The fourth
and most important application was framed as the method of correlations inspired by the way
that Richardson and Zaki 1954 processed their experimental results for power law correlations.
The idea is to plot results of experiments in log-log plots. Remarkably, straight lines emerge.
Apparently the flow of dispersions is governed at the foundation by similarity rules which are
not at all evident. We have the idea that we may implement this method using numerical rather
than real experiments and we think that our results establish this concept. In fact the results in the
experiments and simulations do follow the Richardson-Zaki correlation in a compelling if not
perfect match. We prefer to frame our result as a demonstration that we can generate power laws
by processing DNS data, rather than confirming correlations already obtained. We intend to
promote this approach strongly in the future.
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